punctured polydisk - определение. Что такое punctured polydisk
DICLIB.COM
Языковые инструменты на ИИ
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое punctured polydisk - определение

A CARTESIAN PRODUCT OF DISCS.
Polydisk; Bidisc

Polydisc         
In the theory of functions of several complex variables, a branch of mathematics, a polydisc is a Cartesian product of discs.
Cicindela punctulata         
SPECIES OF INSECT
Draft:Cicindela punctulata (Punctured Tiger Beetle); Draft:Cicindela punctulata; Punctured tiger beetle
Cicindela punctulata, the punctured tiger beetle, is a species of tiger beetle (subfamily Cicindelinae) commonly found across much of the United States, southeastern Canada, and in parts of northern Mexico.
Flat tire         
  • bicycle inner tube]] with [[valve stem]], looking for the puncture
  • A flat tire on an [[Fiat Panda]] automobile
  • Replacing a punctured inner tube on a [[road bicycle]]
  • Puncture repair kit, complete with tire levers, vulcanizing fluid, abrasive grater and fabric, puncture patches, and a bit of chalk to mark the puncture
DEFLATED PNEUMATIC TIRE
Flat tyre; Punctured tyre
A flat tyre (British English: flat tyre) is a deflated pneumatic tyre, which can cause the rim of the wheel to ride on the tire tread or the ground potentially resulting in loss of control of the vehicle or irreparable damage to the tire. The most common cause of a flat tire is puncturing of the tire by a sharp object, such as a nail or pin, letting the air escape.

Википедия

Polydisc

In the theory of functions of several complex variables, a branch of mathematics, a polydisc is a Cartesian product of discs.

More specifically, if we denote by D ( z , r ) {\displaystyle D(z,r)} the open disc of center z and radius r in the complex plane, then an open polydisc is a set of the form

D ( z 1 , r 1 ) × × D ( z n , r n ) . {\displaystyle D(z_{1},r_{1})\times \dots \times D(z_{n},r_{n}).}

It can be equivalently written as

{ w = ( w 1 , w 2 , , w n ) C n : | z k w k | < r k ,  for all  k = 1 , , n } . {\displaystyle \{w=(w_{1},w_{2},\dots ,w_{n})\in {\mathbf {C} }^{n}:\vert z_{k}-w_{k}\vert <r_{k},{\mbox{ for all }}k=1,\dots ,n\}.}

One should not confuse the polydisc with the open ball in Cn, which is defined as

{ w C n : z w < r } . {\displaystyle \{w\in \mathbf {C} ^{n}:\lVert z-w\rVert <r\}.}

Here, the norm is the Euclidean distance in Cn.

When n > 1 {\displaystyle n>1} , open balls and open polydiscs are not biholomorphically equivalent, that is, there is no biholomorphic mapping between the two. This was proven by Poincaré in 1907 by showing that their automorphism groups have different dimensions as Lie groups.

When n = 2 {\displaystyle n=2} the term bidisc is sometimes used.

A polydisc is an example of logarithmically convex Reinhardt domain.